Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.

Identifieur interne : 000621 ( Main/Exploration ); précédent : 000620; suivant : 000622

Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.

Auteurs : Michael A. Plesha [États-Unis] ; Ting-Kuo Huang ; Abhaya M. Dandekar ; Bryce W. Falk ; Karen A. Mcdonald

Source :

RBID : pubmed:19504593

Descripteurs français

English descriptors

Abstract

Use of transient expression for the rapid, large-scale production of recombinant proteins in plants requires optimization of existing methods to facilitate scale-up of the process. We have demonstrated that the techniques used for agroinfiltration and induction greatly impact transient production levels of heterologous protein. A Cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce recombinant alpha-1-antitrypsin (rAAT) by co-infiltrating harvested Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Harvested leaves were both infiltrated and induced by either pressure or vacuum infiltration. Using the vacuum technique for both processes, maximum levels of functional and total rAAT were elevated by (190 +/- 8.7)% and (290 +/- 7.5)%, respectively, over levels achieved when using the pressure technique for both processes. The bioprocessing conditions for vacuum infiltration and induction were optimized and resulted in maximum rAAT production when using an A. tumefaciens concentration at OD(600) of 0.5 and a 0.25-min vacuum infiltration, and multiple 1-min vacuum inductions further increased production 25% and resulted in maximum levels of functional and total rAAT at (2.6 +/- 0.09)% and (4.1 +/- 0.29)% of the total soluble protein, respectively, or (90 +/- 1.7) and (140 +/- 10) mg per kg fresh weight leaf tissue at 6 days post-induction. Use of harvested plant tissue with vacuum infiltration and induction demonstrates a bioprocessing route that is fully amenable to scale-up.

DOI: 10.1002/btpr.149
PubMed: 19504593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.</title>
<author>
<name sortKey="Plesha, Michael A" sort="Plesha, Michael A" uniqKey="Plesha M" first="Michael A" last="Plesha">Michael A. Plesha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Dept. of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ting Kuo" sort="Huang, Ting Kuo" uniqKey="Huang T" first="Ting-Kuo" last="Huang">Ting-Kuo Huang</name>
</author>
<author>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
</author>
<author>
<name sortKey="Falk, Bryce W" sort="Falk, Bryce W" uniqKey="Falk B" first="Bryce W" last="Falk">Bryce W. Falk</name>
</author>
<author>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009 May-Jun</date>
<idno type="RBID">pubmed:19504593</idno>
<idno type="pmid">19504593</idno>
<idno type="doi">10.1002/btpr.149</idno>
<idno type="wicri:Area/Main/Corpus">000634</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000634</idno>
<idno type="wicri:Area/Main/Curation">000634</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000634</idno>
<idno type="wicri:Area/Main/Exploration">000634</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.</title>
<author>
<name sortKey="Plesha, Michael A" sort="Plesha, Michael A" uniqKey="Plesha M" first="Michael A" last="Plesha">Michael A. Plesha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Dept. of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dept. of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ting Kuo" sort="Huang, Ting Kuo" uniqKey="Huang T" first="Ting-Kuo" last="Huang">Ting-Kuo Huang</name>
</author>
<author>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
</author>
<author>
<name sortKey="Falk, Bryce W" sort="Falk, Bryce W" uniqKey="Falk B" first="Bryce W" last="Falk">Bryce W. Falk</name>
</author>
<author>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology progress</title>
<idno type="eISSN">1520-6033</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Agrobacterium tumefaciens (metabolism)</term>
<term>Biotechnology (methods)</term>
<term>Cucumovirus (genetics)</term>
<term>Cucumovirus (metabolism)</term>
<term>Filtration (methods)</term>
<term>Gene Expression (MeSH)</term>
<term>Genetic Vectors (genetics)</term>
<term>Genetic Vectors (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
<term>Tobacco (virology)</term>
<term>Vacuum (MeSH)</term>
<term>alpha 1-Antitrypsin (genetics)</term>
<term>alpha 1-Antitrypsin (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Agrobacterium tumefaciens (métabolisme)</term>
<term>Biotechnologie (méthodes)</term>
<term>Cucumovirus (génétique)</term>
<term>Cucumovirus (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Filtration (méthodes)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (métabolisme)</term>
<term>Tabac (virologie)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Vecteurs génétiques (métabolisme)</term>
<term>Vide (MeSH)</term>
<term>alpha-1-Antitrypsine (génétique)</term>
<term>alpha-1-Antitrypsine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Recombinant Proteins</term>
<term>alpha 1-Antitrypsin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Cucumovirus</term>
<term>Genetic Vectors</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Cucumovirus</term>
<term>Protéines recombinantes</term>
<term>Tabac</term>
<term>Vecteurs génétiques</term>
<term>alpha-1-Antitrypsine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Cucumovirus</term>
<term>Genetic Vectors</term>
<term>Recombinant Proteins</term>
<term>Tobacco</term>
<term>alpha 1-Antitrypsin</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
<term>Filtration</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Cucumovirus</term>
<term>Protéines recombinantes</term>
<term>Tabac</term>
<term>Vecteurs génétiques</term>
<term>alpha-1-Antitrypsine</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
<term>Filtration</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Models, Biological</term>
<term>Vacuum</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Modèles biologiques</term>
<term>Vide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Use of transient expression for the rapid, large-scale production of recombinant proteins in plants requires optimization of existing methods to facilitate scale-up of the process. We have demonstrated that the techniques used for agroinfiltration and induction greatly impact transient production levels of heterologous protein. A Cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce recombinant alpha-1-antitrypsin (rAAT) by co-infiltrating harvested Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Harvested leaves were both infiltrated and induced by either pressure or vacuum infiltration. Using the vacuum technique for both processes, maximum levels of functional and total rAAT were elevated by (190 +/- 8.7)% and (290 +/- 7.5)%, respectively, over levels achieved when using the pressure technique for both processes. The bioprocessing conditions for vacuum infiltration and induction were optimized and resulted in maximum rAAT production when using an A. tumefaciens concentration at OD(600) of 0.5 and a 0.25-min vacuum infiltration, and multiple 1-min vacuum inductions further increased production 25% and resulted in maximum levels of functional and total rAAT at (2.6 +/- 0.09)% and (4.1 +/- 0.29)% of the total soluble protein, respectively, or (90 +/- 1.7) and (140 +/- 10) mg per kg fresh weight leaf tissue at 6 days post-induction. Use of harvested plant tissue with vacuum infiltration and induction demonstrates a bioprocessing route that is fully amenable to scale-up.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19504593</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-6033</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>3</Issue>
<PubDate>
<MedlineDate>2009 May-Jun</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Biotechnology progress</Title>
<ISOAbbreviation>Biotechnol Prog</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.</ArticleTitle>
<Pagination>
<MedlinePgn>722-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/btpr.149</ELocationID>
<Abstract>
<AbstractText>Use of transient expression for the rapid, large-scale production of recombinant proteins in plants requires optimization of existing methods to facilitate scale-up of the process. We have demonstrated that the techniques used for agroinfiltration and induction greatly impact transient production levels of heterologous protein. A Cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce recombinant alpha-1-antitrypsin (rAAT) by co-infiltrating harvested Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Harvested leaves were both infiltrated and induced by either pressure or vacuum infiltration. Using the vacuum technique for both processes, maximum levels of functional and total rAAT were elevated by (190 +/- 8.7)% and (290 +/- 7.5)%, respectively, over levels achieved when using the pressure technique for both processes. The bioprocessing conditions for vacuum infiltration and induction were optimized and resulted in maximum rAAT production when using an A. tumefaciens concentration at OD(600) of 0.5 and a 0.25-min vacuum infiltration, and multiple 1-min vacuum inductions further increased production 25% and resulted in maximum levels of functional and total rAAT at (2.6 +/- 0.09)% and (4.1 +/- 0.29)% of the total soluble protein, respectively, or (90 +/- 1.7) and (140 +/- 10) mg per kg fresh weight leaf tissue at 6 days post-induction. Use of harvested plant tissue with vacuum infiltration and induction demonstrates a bioprocessing route that is fully amenable to scale-up.</AbstractText>
<CopyrightInformation>2009 American Institute of Chemical Engineers</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plesha</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ting-Kuo</ForeName>
<Initials>TK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dandekar</LastName>
<ForeName>Abhaya M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Falk</LastName>
<ForeName>Bryce W</ForeName>
<Initials>BW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McDonald</LastName>
<ForeName>Karen A</ForeName>
<Initials>KA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Prog</MedlineTA>
<NlmUniqueID>8506292</NlmUniqueID>
<ISSNLinking>1520-6033</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000515">alpha 1-Antitrypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017799" MajorTopicYN="N">Cucumovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005374" MajorTopicYN="N">Filtration</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014618" MajorTopicYN="N">Vacuum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000515" MajorTopicYN="N">alpha 1-Antitrypsin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19504593</ArticleId>
<ArticleId IdType="doi">10.1002/btpr.149</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
<name sortKey="Falk, Bryce W" sort="Falk, Bryce W" uniqKey="Falk B" first="Bryce W" last="Falk">Bryce W. Falk</name>
<name sortKey="Huang, Ting Kuo" sort="Huang, Ting Kuo" uniqKey="Huang T" first="Ting-Kuo" last="Huang">Ting-Kuo Huang</name>
<name sortKey="Mcdonald, Karen A" sort="Mcdonald, Karen A" uniqKey="Mcdonald K" first="Karen A" last="Mcdonald">Karen A. Mcdonald</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Plesha, Michael A" sort="Plesha, Michael A" uniqKey="Plesha M" first="Michael A" last="Plesha">Michael A. Plesha</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000621 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000621 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19504593
   |texte=   Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19504593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024